1
|
Log file opened on Wed Jan 13 17:37:24 2016
|
2
|
Host: tcbs14 pid: 4332 rank ID: 0 number of ranks: 1
|
3
|
:-) GROMACS - gmx mdrun, VERSION 5.1.2-dev-20160113-8b14e14 (-:
|
4
|
|
5
|
GROMACS is written by:
|
6
|
Emile Apol Rossen Apostolov Herman J.C. Berendsen Par Bjelkmar
|
7
|
Aldert van Buuren Rudi van Drunen Anton Feenstra Sebastian Fritsch
|
8
|
Gerrit Groenhof Christoph Junghans Anca Hamuraru Vincent Hindriksen
|
9
|
Dimitrios Karkoulis Peter Kasson Jiri Kraus Carsten Kutzner
|
10
|
Per Larsson Justin A. Lemkul Magnus Lundborg Pieter Meulenhoff
|
11
|
Erik Marklund Teemu Murtola Szilard Pall Sander Pronk
|
12
|
Roland Schulz Alexey Shvetsov Michael Shirts Alfons Sijbers
|
13
|
Peter Tieleman Teemu Virolainen Christian Wennberg Maarten Wolf
|
14
|
and the project leaders:
|
15
|
Mark Abraham, Berk Hess, Erik Lindahl, and David van der Spoel
|
16
|
|
17
|
Copyright (c) 1991-2000, University of Groningen, The Netherlands.
|
18
|
Copyright (c) 2001-2015, The GROMACS development team at
|
19
|
Uppsala University, Stockholm University and
|
20
|
the Royal Institute of Technology, Sweden.
|
21
|
check out http://www.gromacs.org for more information.
|
22
|
|
23
|
GROMACS is free software; you can redistribute it and/or modify it
|
24
|
under the terms of the GNU Lesser General Public License
|
25
|
as published by the Free Software Foundation; either version 2.1
|
26
|
of the License, or (at your option) any later version.
|
27
|
|
28
|
GROMACS: gmx mdrun, VERSION 5.1.2-dev-20160113-8b14e14
|
29
|
Executable: /nethome/pszilard-projects/gromacs/gromacs-5.1/build_gcc48_hsw_cuda65/bin/gmx
|
30
|
Data prefix: /nethome/pszilard-projects/gromacs/gromacs-5.1 (source tree)
|
31
|
Command line:
|
32
|
gmx mdrun -quiet -v -resethway -noconfout -pin on -ntmpi 1 -ntomp 16 -nsteps 10000 -g test_1x16_notune_5 -notunepme
|
33
|
|
34
|
GROMACS version: VERSION 5.1.2-dev-20160113-8b14e14
|
35
|
GIT SHA1 hash: 8b14e14f4a18193eacc86a2da9a4d812df0e03eb
|
36
|
Precision: single
|
37
|
Memory model: 64 bit
|
38
|
MPI library: thread_mpi
|
39
|
OpenMP support: enabled (GMX_OPENMP_MAX_THREADS = 32)
|
40
|
GPU support: enabled
|
41
|
OpenCL support: disabled
|
42
|
invsqrt routine: gmx_software_invsqrt(x)
|
43
|
SIMD instructions: AVX2_256
|
44
|
FFT library: fftw-3.3.4-sse2-avx
|
45
|
RDTSCP usage: enabled
|
46
|
C++11 compilation: disabled
|
47
|
TNG support: enabled
|
48
|
Tracing support: disabled
|
49
|
Built on: Mon Sep 14 15:56:07 CEST 2015
|
50
|
Built by: pszilard@tcbs14 [CMAKE]
|
51
|
Build OS/arch: Linux 3.13.0-63-generic x86_64
|
52
|
Build CPU vendor: GenuineIntel
|
53
|
Build CPU brand: Intel(R) Core(TM) i7-5960X CPU @ 3.00GHz
|
54
|
Build CPU family: 6 Model: 63 Stepping: 2
|
55
|
Build CPU features: aes apic avx avx2 clfsh cmov cx8 cx16 f16c fma htt lahf_lm mmx msr nonstop_tsc pcid pclmuldq pdcm pdpe1gb popcnt pse rdrnd rdtscp sse2 sse3 sse4.1 sse4.2 ssse3 tdt x2apic
|
56
|
C compiler: /usr/bin/gcc-4.8 GNU 4.8.1
|
57
|
C compiler flags: -march=core-avx2 -Wextra -Wno-missing-field-initializers -Wno-sign-compare -Wpointer-arith -Wall -Wno-unused -Wunused-value -Wunused-parameter -O3 -DNDEBUG -funroll-all-loops -fexcess-precision=fast -Wno-array-bounds
|
58
|
C++ compiler: /usr/bin/g++-4.8 GNU 4.8.1
|
59
|
C++ compiler flags: -march=core-avx2 -Wextra -Wno-missing-field-initializers -Wpointer-arith -Wall -Wno-unused-function -O3 -DNDEBUG -funroll-all-loops -fexcess-precision=fast -Wno-array-bounds
|
60
|
Boost version: 1.55.0 (internal)
|
61
|
CUDA compiler: /opt/tcbsys/cuda/6.5/bin/nvcc nvcc: NVIDIA (R) Cuda compiler driver;Copyright (c) 2005-2014 NVIDIA Corporation;Built on Wed_Aug_27_10:36:36_CDT_2014;Cuda compilation tools, release 6.5, V6.5.16
|
62
|
CUDA compiler flags:-gencode;arch=compute_35,code=sm_35;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_52,code=sm_52;-use_fast_math;-Xptxas;-dlcm=ca; ;-march=core-avx2;-Wextra;-Wno-missing-field-initializers;-Wpointer-arith;-Wall;-Wno-unused-function;-O3;-DNDEBUG;-funroll-all-loops;-fexcess-precision=fast;-Wno-array-bounds;
|
63
|
CUDA driver: 7.50
|
64
|
CUDA runtime: 6.50
|
65
|
|
66
|
|
67
|
Running on 1 node with total 8 cores, 16 logical cores, 1 compatible GPU
|
68
|
Hardware detected:
|
69
|
CPU info:
|
70
|
Vendor: GenuineIntel
|
71
|
Brand: Intel(R) Core(TM) i7-5960X CPU @ 3.00GHz
|
72
|
Family: 6 model: 63 stepping: 2
|
73
|
CPU features: aes apic avx avx2 clfsh cmov cx8 cx16 f16c fma htt lahf_lm mmx msr nonstop_tsc pcid pclmuldq pdcm pdpe1gb popcnt pse rdrnd rdtscp sse2 sse3 sse4.1 sse4.2 ssse3 tdt x2apic
|
74
|
SIMD instructions most likely to fit this hardware: AVX2_256
|
75
|
SIMD instructions selected at GROMACS compile time: AVX2_256
|
76
|
GPU info:
|
77
|
Number of GPUs detected: 1
|
78
|
#0: NVIDIA Quadro M6000, compute cap.: 5.2, ECC: no, stat: compatible
|
79
|
|
80
|
|
81
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
82
|
M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E.
|
83
|
Lindahl
|
84
|
GROMACS: High performance molecular simulations through multi-level
|
85
|
parallelism from laptops to supercomputers
|
86
|
SoftwareX 1 (2015) pp. 19-25
|
87
|
-------- -------- --- Thank You --- -------- --------
|
88
|
|
89
|
|
90
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
91
|
S. Páll, M. J. Abraham, C. Kutzner, B. Hess, E. Lindahl
|
92
|
Tackling Exascale Software Challenges in Molecular Dynamics Simulations with
|
93
|
GROMACS
|
94
|
In S. Markidis & E. Laure (Eds.), Solving Software Challenges for Exascale 8759 (2015) pp. 3-27
|
95
|
-------- -------- --- Thank You --- -------- --------
|
96
|
|
97
|
|
98
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
99
|
S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R.
|
100
|
Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl
|
101
|
GROMACS 4.5: a high-throughput and highly parallel open source molecular
|
102
|
simulation toolkit
|
103
|
Bioinformatics 29 (2013) pp. 845-54
|
104
|
-------- -------- --- Thank You --- -------- --------
|
105
|
|
106
|
|
107
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
108
|
B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
|
109
|
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
|
110
|
molecular simulation
|
111
|
J. Chem. Theory Comput. 4 (2008) pp. 435-447
|
112
|
-------- -------- --- Thank You --- -------- --------
|
113
|
|
114
|
|
115
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
116
|
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
|
117
|
Berendsen
|
118
|
GROMACS: Fast, Flexible and Free
|
119
|
J. Comp. Chem. 26 (2005) pp. 1701-1719
|
120
|
-------- -------- --- Thank You --- -------- --------
|
121
|
|
122
|
|
123
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
124
|
E. Lindahl and B. Hess and D. van der Spoel
|
125
|
GROMACS 3.0: A package for molecular simulation and trajectory analysis
|
126
|
J. Mol. Mod. 7 (2001) pp. 306-317
|
127
|
-------- -------- --- Thank You --- -------- --------
|
128
|
|
129
|
|
130
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
131
|
H. J. C. Berendsen, D. van der Spoel and R. van Drunen
|
132
|
GROMACS: A message-passing parallel molecular dynamics implementation
|
133
|
Comp. Phys. Comm. 91 (1995) pp. 43-56
|
134
|
-------- -------- --- Thank You --- -------- --------
|
135
|
|
136
|
|
137
|
For optimal performance with a GPU nstlist (now 10) should be larger.
|
138
|
The optimum depends on your CPU and GPU resources.
|
139
|
You might want to try several nstlist values.
|
140
|
Changing nstlist from 10 to 40, rlist from 0.9 to 0.996
|
141
|
|
142
|
Input Parameters:
|
143
|
integrator = md
|
144
|
tinit = 0
|
145
|
dt = 0.002
|
146
|
nsteps = 10000
|
147
|
init-step = 0
|
148
|
simulation-part = 1
|
149
|
comm-mode = Linear
|
150
|
nstcomm = 100
|
151
|
bd-fric = 0
|
152
|
ld-seed = 4200386634
|
153
|
emtol = 10
|
154
|
emstep = 0.01
|
155
|
niter = 20
|
156
|
fcstep = 0
|
157
|
nstcgsteep = 1000
|
158
|
nbfgscorr = 10
|
159
|
rtpi = 0.05
|
160
|
nstxout = 0
|
161
|
nstvout = 0
|
162
|
nstfout = 0
|
163
|
nstlog = 0
|
164
|
nstcalcenergy = 100
|
165
|
nstenergy = 500
|
166
|
nstxout-compressed = 0
|
167
|
compressed-x-precision = 1000
|
168
|
cutoff-scheme = Verlet
|
169
|
nstlist = 40
|
170
|
ns-type = Grid
|
171
|
pbc = xyz
|
172
|
periodic-molecules = FALSE
|
173
|
verlet-buffer-tolerance = 0.005
|
174
|
rlist = 0.996
|
175
|
rlistlong = 0.996
|
176
|
nstcalclr = 10
|
177
|
coulombtype = PME
|
178
|
coulomb-modifier = Potential-shift
|
179
|
rcoulomb-switch = 0
|
180
|
rcoulomb = 0.9
|
181
|
epsilon-r = 1
|
182
|
epsilon-rf = inf
|
183
|
vdw-type = Cut-off
|
184
|
vdw-modifier = Potential-shift
|
185
|
rvdw-switch = 0
|
186
|
rvdw = 0.9
|
187
|
DispCorr = No
|
188
|
table-extension = 1
|
189
|
fourierspacing = 0.1125
|
190
|
fourier-nx = 56
|
191
|
fourier-ny = 56
|
192
|
fourier-nz = 56
|
193
|
pme-order = 4
|
194
|
ewald-rtol = 1e-05
|
195
|
ewald-rtol-lj = 0.001
|
196
|
lj-pme-comb-rule = Geometric
|
197
|
ewald-geometry = 0
|
198
|
epsilon-surface = 0
|
199
|
implicit-solvent = No
|
200
|
gb-algorithm = Still
|
201
|
nstgbradii = 1
|
202
|
rgbradii = 1
|
203
|
gb-epsilon-solvent = 80
|
204
|
gb-saltconc = 0
|
205
|
gb-obc-alpha = 1
|
206
|
gb-obc-beta = 0.8
|
207
|
gb-obc-gamma = 4.85
|
208
|
gb-dielectric-offset = 0.009
|
209
|
sa-algorithm = Ace-approximation
|
210
|
sa-surface-tension = 2.05016
|
211
|
tcoupl = V-rescale
|
212
|
nsttcouple = 10
|
213
|
nh-chain-length = 0
|
214
|
print-nose-hoover-chain-variables = FALSE
|
215
|
pcoupl = No
|
216
|
pcoupltype = Isotropic
|
217
|
nstpcouple = -1
|
218
|
tau-p = 1
|
219
|
compressibility (3x3):
|
220
|
compressibility[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
|
221
|
compressibility[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
|
222
|
compressibility[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
|
223
|
ref-p (3x3):
|
224
|
ref-p[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
|
225
|
ref-p[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
|
226
|
ref-p[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
|
227
|
refcoord-scaling = No
|
228
|
posres-com (3):
|
229
|
posres-com[0]= 0.00000e+00
|
230
|
posres-com[1]= 0.00000e+00
|
231
|
posres-com[2]= 0.00000e+00
|
232
|
posres-comB (3):
|
233
|
posres-comB[0]= 0.00000e+00
|
234
|
posres-comB[1]= 0.00000e+00
|
235
|
posres-comB[2]= 0.00000e+00
|
236
|
QMMM = FALSE
|
237
|
QMconstraints = 0
|
238
|
QMMMscheme = 0
|
239
|
MMChargeScaleFactor = 1
|
240
|
qm-opts:
|
241
|
ngQM = 0
|
242
|
constraint-algorithm = Lincs
|
243
|
continuation = FALSE
|
244
|
Shake-SOR = FALSE
|
245
|
shake-tol = 0.0001
|
246
|
lincs-order = 4
|
247
|
lincs-iter = 1
|
248
|
lincs-warnangle = 30
|
249
|
nwall = 0
|
250
|
wall-type = 9-3
|
251
|
wall-r-linpot = -1
|
252
|
wall-atomtype[0] = -1
|
253
|
wall-atomtype[1] = -1
|
254
|
wall-density[0] = 0
|
255
|
wall-density[1] = 0
|
256
|
wall-ewald-zfac = 3
|
257
|
pull = FALSE
|
258
|
rotation = FALSE
|
259
|
interactiveMD = FALSE
|
260
|
disre = No
|
261
|
disre-weighting = Conservative
|
262
|
disre-mixed = FALSE
|
263
|
dr-fc = 1000
|
264
|
dr-tau = 0
|
265
|
nstdisreout = 100
|
266
|
orire-fc = 0
|
267
|
orire-tau = 0
|
268
|
nstorireout = 100
|
269
|
free-energy = no
|
270
|
cos-acceleration = 0
|
271
|
deform (3x3):
|
272
|
deform[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
|
273
|
deform[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
|
274
|
deform[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
|
275
|
simulated-tempering = FALSE
|
276
|
E-x:
|
277
|
n = 0
|
278
|
E-xt:
|
279
|
n = 0
|
280
|
E-y:
|
281
|
n = 0
|
282
|
E-yt:
|
283
|
n = 0
|
284
|
E-z:
|
285
|
n = 0
|
286
|
E-zt:
|
287
|
n = 0
|
288
|
swapcoords = no
|
289
|
adress = FALSE
|
290
|
userint1 = 0
|
291
|
userint2 = 0
|
292
|
userint3 = 0
|
293
|
userint4 = 0
|
294
|
userreal1 = 0
|
295
|
userreal2 = 0
|
296
|
userreal3 = 0
|
297
|
userreal4 = 0
|
298
|
grpopts:
|
299
|
nrdf: 48056
|
300
|
ref-t: 300
|
301
|
tau-t: 0.1
|
302
|
annealing: No
|
303
|
annealing-npoints: 0
|
304
|
acc: 0 0 0
|
305
|
nfreeze: N N N
|
306
|
energygrp-flags[ 0]: 0
|
307
|
|
308
|
|
309
|
Overriding nsteps with value passed on the command line: 10000 steps, 20 ps
|
310
|
|
311
|
Using 1 MPI thread
|
312
|
Using 16 OpenMP threads
|
313
|
|
314
|
1 compatible GPU is present, with ID 0
|
315
|
1 GPU auto-selected for this run.
|
316
|
Mapping of GPU ID to the 1 PP rank in this node: 0
|
317
|
|
318
|
Will do PME sum in reciprocal space for electrostatic interactions.
|
319
|
|
320
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
321
|
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen
|
322
|
A smooth particle mesh Ewald method
|
323
|
J. Chem. Phys. 103 (1995) pp. 8577-8592
|
324
|
-------- -------- --- Thank You --- -------- --------
|
325
|
|
326
|
Will do ordinary reciprocal space Ewald sum.
|
327
|
Using a Gaussian width (1/beta) of 0.288146 nm for Ewald
|
328
|
Cut-off's: NS: 0.996 Coulomb: 0.9 LJ: 0.9
|
329
|
System total charge: 0.000
|
330
|
Generated table with 998 data points for Ewald.
|
331
|
Tabscale = 500 points/nm
|
332
|
Generated table with 998 data points for LJ6.
|
333
|
Tabscale = 500 points/nm
|
334
|
Generated table with 998 data points for LJ12.
|
335
|
Tabscale = 500 points/nm
|
336
|
Generated table with 998 data points for 1-4 COUL.
|
337
|
Tabscale = 500 points/nm
|
338
|
Generated table with 998 data points for 1-4 LJ6.
|
339
|
Tabscale = 500 points/nm
|
340
|
Generated table with 998 data points for 1-4 LJ12.
|
341
|
Tabscale = 500 points/nm
|
342
|
Potential shift: LJ r^-12: -3.541e+00 r^-6: -1.882e+00, Ewald -1.000e-05
|
343
|
Initialized non-bonded Ewald correction tables, spacing: 8.85e-04 size: 1018
|
344
|
|
345
|
|
346
|
NOTE: GROMACS was configured without NVML support hence it can not exploit
|
347
|
application clocks of the detected Quadro M6000 GPU to improve performance.
|
348
|
Recompile with the NVML library (compatible with the driver used) or set application clocks manually.
|
349
|
|
350
|
|
351
|
Using GPU 8x8 non-bonded kernels
|
352
|
|
353
|
Removing pbc first time
|
354
|
Pinning threads with an auto-selected logical core stride of 1
|
355
|
|
356
|
Initializing LINear Constraint Solver
|
357
|
|
358
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
359
|
B. Hess and H. Bekker and H. J. C. Berendsen and J. G. E. M. Fraaije
|
360
|
LINCS: A Linear Constraint Solver for molecular simulations
|
361
|
J. Comp. Chem. 18 (1997) pp. 1463-1472
|
362
|
-------- -------- --- Thank You --- -------- --------
|
363
|
|
364
|
The number of constraints is 2053
|
365
|
|
366
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
367
|
S. Miyamoto and P. A. Kollman
|
368
|
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
|
369
|
Water Models
|
370
|
J. Comp. Chem. 13 (1992) pp. 952-962
|
371
|
-------- -------- --- Thank You --- -------- --------
|
372
|
|
373
|
Center of mass motion removal mode is Linear
|
374
|
We have the following groups for center of mass motion removal:
|
375
|
0: rest
|
376
|
|
377
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
378
|
G. Bussi, D. Donadio and M. Parrinello
|
379
|
Canonical sampling through velocity rescaling
|
380
|
J. Chem. Phys. 126 (2007) pp. 014101
|
381
|
-------- -------- --- Thank You --- -------- --------
|
382
|
|
383
|
There are: 24040 Atoms
|
384
|
|
385
|
Constraining the starting coordinates (step 0)
|
386
|
|
387
|
Constraining the coordinates at t0-dt (step 0)
|
388
|
RMS relative constraint deviation after constraining: 1.20e-05
|
389
|
Initial temperature: 297.8 K
|
390
|
|
391
|
Started mdrun on rank 0 Wed Jan 13 17:37:25 2016
|
392
|
Step Time Lambda
|
393
|
0 0.00000 0.00000
|
394
|
|
395
|
Energies (kJ/mol)
|
396
|
Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
|
397
|
4.44103e+03 5.70375e+03 2.50388e+02 2.00472e+03 1.68037e+04
|
398
|
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
|
399
|
4.16574e+04 -3.84143e+05 3.38823e+03 -3.09894e+05 5.99548e+04
|
400
|
Total Energy Conserved En. Temperature Pressure (bar) Constr. rmsd
|
401
|
-2.49939e+05 -2.49939e+05 3.00104e+02 -3.53152e+02 2.74372e-05
|
402
|
|
403
|
|
404
|
step 5000: resetting all time and cycle counters
|
405
|
|
406
|
Restarted time on rank 0 Wed Jan 13 17:37:30 2016
|
407
|
Step Time Lambda
|
408
|
10000 20.00000 0.00000
|
409
|
|
410
|
Energies (kJ/mol)
|
411
|
Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
|
412
|
4.58476e+03 5.58935e+03 2.43991e+02 2.08611e+03 1.69315e+04
|
413
|
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
|
414
|
4.22963e+04 -3.85657e+05 3.49717e+03 -3.10428e+05 5.94818e+04
|
415
|
Total Energy Conserved En. Temperature Pressure (bar) Constr. rmsd
|
416
|
-2.50946e+05 -2.50372e+05 2.97737e+02 -2.83088e+02 2.85865e-05
|
417
|
|
418
|
<====== ############### ==>
|
419
|
<==== A V E R A G E S ====>
|
420
|
<== ############### ======>
|
421
|
|
422
|
Statistics over 10001 steps using 101 frames
|
423
|
|
424
|
Energies (kJ/mol)
|
425
|
Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
|
426
|
4.47830e+03 5.59856e+03 2.59648e+02 2.08591e+03 1.68327e+04
|
427
|
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
|
428
|
4.21674e+04 -3.85226e+05 3.45553e+03 -3.10348e+05 5.99840e+04
|
429
|
Total Energy Conserved En. Temperature Pressure (bar) Constr. rmsd
|
430
|
-2.50364e+05 -2.50160e+05 3.00251e+02 -2.13938e+02 0.00000e+00
|
431
|
|
432
|
Total Virial (kJ/mol)
|
433
|
2.16720e+04 4.09824e+01 -8.46002e+01
|
434
|
4.08116e+01 2.15351e+04 7.10434e+01
|
435
|
-8.39866e+01 7.12612e+01 2.15554e+04
|
436
|
|
437
|
Pressure (bar)
|
438
|
-2.21857e+02 -5.57502e+00 7.41399e+00
|
439
|
-5.55208e+00 -2.07590e+02 -1.19342e+01
|
440
|
7.33157e+00 -1.19634e+01 -2.12367e+02
|
441
|
|
442
|
|
443
|
M E G A - F L O P S A C C O U N T I N G
|
444
|
|
445
|
NB=Group-cutoff nonbonded kernels NxN=N-by-N cluster Verlet kernels
|
446
|
RF=Reaction-Field VdW=Van der Waals QSTab=quadratic-spline table
|
447
|
W3=SPC/TIP3p W4=TIP4p (single or pairs)
|
448
|
V&F=Potential and force V=Potential only F=Force only
|
449
|
|
450
|
Computing: M-Number M-Flops % Flops
|
451
|
-----------------------------------------------------------------------------
|
452
|
Pair Search distance check 372.519600 3352.676 0.1
|
453
|
NxN Ewald Elec. + LJ [F] 79468.710592 5244934.899 92.3
|
454
|
NxN Ewald Elec. + LJ [V&F] 818.982464 87631.124 1.5
|
455
|
1,4 nonbonded interactions 26.710341 2403.931 0.0
|
456
|
Calc Weights 360.672120 12984.196 0.2
|
457
|
Spread Q Bspline 7694.338560 15388.677 0.3
|
458
|
Gather F Bspline 7694.338560 46166.031 0.8
|
459
|
3D-FFT 30602.049186 244816.393 4.3
|
460
|
Solve PME 15.683136 1003.721 0.0
|
461
|
Shift-X 3.029040 18.174 0.0
|
462
|
Angles 18.523704 3111.982 0.1
|
463
|
Propers 27.915582 6392.668 0.1
|
464
|
Impropers 2.110422 438.968 0.0
|
465
|
Virial 1.228335 22.110 0.0
|
466
|
Stop-CM 1.226040 12.260 0.0
|
467
|
Calc-Ekin 24.064040 649.729 0.0
|
468
|
Lincs 10.267053 616.023 0.0
|
469
|
Lincs-Mat 222.284448 889.138 0.0
|
470
|
Constraint-V 130.596114 1044.769 0.0
|
471
|
Constraint-Vir 1.227111 29.451 0.0
|
472
|
Settle 36.687336 11850.010 0.2
|
473
|
-----------------------------------------------------------------------------
|
474
|
Total 5683756.931 100.0
|
475
|
-----------------------------------------------------------------------------
|
476
|
|
477
|
|
478
|
R E A L C Y C L E A N D T I M E A C C O U N T I N G
|
479
|
|
480
|
On 1 MPI rank, each using 16 OpenMP threads
|
481
|
|
482
|
Computing: Num Num Call Wall time Giga-Cycles
|
483
|
Ranks Threads Count (s) total sum %
|
484
|
-----------------------------------------------------------------------------
|
485
|
Neighbor search 1 16 126 0.140 6.732 3.1
|
486
|
Launch GPU ops. 1 16 5001 0.173 8.326 3.8
|
487
|
Force 1 16 5001 0.536 25.729 11.8
|
488
|
PME mesh 1 16 5001 2.695 129.434 59.2
|
489
|
Wait GPU local 1 16 5001 0.041 1.959 0.9
|
490
|
NB X/F buffer ops. 1 16 9876 0.115 5.520 2.5
|
491
|
Update 1 16 5001 0.199 9.569 4.4
|
492
|
Constraints 1 16 5001 0.594 28.510 13.0
|
493
|
Rest 0.062 2.993 1.4
|
494
|
-----------------------------------------------------------------------------
|
495
|
Total 4.556 218.774 100.0
|
496
|
-----------------------------------------------------------------------------
|
497
|
Breakdown of PME mesh computation
|
498
|
-----------------------------------------------------------------------------
|
499
|
PME spread/gather 1 16 10002 1.540 73.956 33.8
|
500
|
PME 3D-FFT 1 16 10002 1.004 48.205 22.0
|
501
|
PME solve Elec 1 16 5001 0.139 6.665 3.0
|
502
|
-----------------------------------------------------------------------------
|
503
|
Breakdown of PP computation
|
504
|
-----------------------------------------------------------------------------
|
505
|
NS grid local 1 16 126 0.029 1.391 0.6
|
506
|
NS search local 1 16 126 0.102 4.879 2.2
|
507
|
Bonded F 1 16 5001 0.301 14.442 6.6
|
508
|
Listed buffer ops. 1 16 5001 0.168 8.082 3.7
|
509
|
NB X buffer ops. 1 16 4875 0.056 2.668 1.2
|
510
|
NB F buffer ops. 1 16 5001 0.059 2.830 1.3
|
511
|
-----------------------------------------------------------------------------
|
512
|
|
513
|
GPU timings
|
514
|
-----------------------------------------------------------------------------
|
515
|
Computing: Count Wall t (s) ms/step %
|
516
|
-----------------------------------------------------------------------------
|
517
|
Pair list H2D 126 0.014 0.109 0.5
|
518
|
X / q H2D 5001 0.199 0.040 7.6
|
519
|
Nonbonded F kernel 4850 2.154 0.444 82.0
|
520
|
Nonbonded F+ene k. 25 0.017 0.680 0.6
|
521
|
Nonbonded F+prune k. 100 0.058 0.579 2.2
|
522
|
Nonbonded F+ene+prune k. 26 0.021 0.822 0.8
|
523
|
F D2H 5001 0.162 0.032 6.2
|
524
|
-----------------------------------------------------------------------------
|
525
|
Total 2.625 0.525 100.0
|
526
|
-----------------------------------------------------------------------------
|
527
|
|
528
|
Force evaluation time GPU/CPU: 0.525 ms/0.646 ms = 0.812
|
529
|
For optimal performance this ratio should be close to 1!
|
530
|
|
531
|
Core t (s) Wall t (s) (%)
|
532
|
Time: 72.644 4.556 1594.6
|
533
|
(ns/day) (hour/ns)
|
534
|
Performance: 189.689 0.127
|
535
|
Finished mdrun on rank 0 Wed Jan 13 17:37:35 2016
|