1
|
Log file opened on Fri Mar 22 09:18:11 2019
|
2
|
Host: r2c01cn3.leibniz pid: 11618 rank ID: 0 number of ranks: 112
|
3
|
:-) GROMACS - gmx mdrun, 2018.3 (-:
|
4
|
|
5
|
GROMACS is written by:
|
6
|
Emile Apol Rossen Apostolov Paul Bauer Herman J.C. Berendsen
|
7
|
Par Bjelkmar Aldert van Buuren Rudi van Drunen Anton Feenstra
|
8
|
Gerrit Groenhof Aleksei Iupinov Christoph Junghans Anca Hamuraru
|
9
|
Vincent Hindriksen Dimitrios Karkoulis Peter Kasson Jiri Kraus
|
10
|
Carsten Kutzner Per Larsson Justin A. Lemkul Viveca Lindahl
|
11
|
Magnus Lundborg Pieter Meulenhoff Erik Marklund Teemu Murtola
|
12
|
Szilard Pall Sander Pronk Roland Schulz Alexey Shvetsov
|
13
|
Michael Shirts Alfons Sijbers Peter Tieleman Teemu Virolainen
|
14
|
Christian Wennberg Maarten Wolf
|
15
|
and the project leaders:
|
16
|
Mark Abraham, Berk Hess, Erik Lindahl, and David van der Spoel
|
17
|
|
18
|
Copyright (c) 1991-2000, University of Groningen, The Netherlands.
|
19
|
Copyright (c) 2001-2017, The GROMACS development team at
|
20
|
Uppsala University, Stockholm University and
|
21
|
the Royal Institute of Technology, Sweden.
|
22
|
check out http://www.gromacs.org for more information.
|
23
|
|
24
|
GROMACS is free software; you can redistribute it and/or modify it
|
25
|
under the terms of the GNU Lesser General Public License
|
26
|
as published by the Free Software Foundation; either version 2.1
|
27
|
of the License, or (at your option) any later version.
|
28
|
|
29
|
GROMACS: gmx mdrun, version 2018.3
|
30
|
Executable: /apps/broadwell/centos7/GROMACS/2018.3-intel-2018b-UArecipe/bin/gmx_mpi
|
31
|
Data prefix: /apps/broadwell/centos7/GROMACS/2018.3-intel-2018b-UArecipe
|
32
|
Working dir: /scratch/gromacs-2019/test2018
|
33
|
Command line:
|
34
|
gmx_mpi mdrun -ntomp 1 -s 0519.tpr -o /scratch/gromacs-2019/test2018/0519.trr -x /scratch/gromacs-2019/test2018/0519.xtc -cpo /scratch/gromacs-2019/test2018/0519.cpt -c /scratch/gromacs-2019/test2018/0519.gro -e /scratch/gromacs-2019/test2018/0519.edr -dhdl /scratch/gromacs-2019/test2018/0519.xvg -g /scratch/gromacs-2019/test2018/0519.log -px /scratch/gromacs-2019/test2018/0519.x.xvg -pf /scratch/gromacs-2019/test2018/0519.f.xvg -noconfout -rcon 0.7 -pin on -dds 0.9 -dlb auto -maxh 1
|
35
|
|
36
|
GROMACS version: 2018.3
|
37
|
Precision: single
|
38
|
Memory model: 64 bit
|
39
|
MPI library: MPI
|
40
|
OpenMP support: enabled (GMX_OPENMP_MAX_THREADS = 64)
|
41
|
GPU support: disabled
|
42
|
SIMD instructions: AVX2_256
|
43
|
FFT library: Intel MKL
|
44
|
RDTSCP usage: enabled
|
45
|
TNG support: enabled
|
46
|
Hwloc support: hwloc-1.11.2
|
47
|
Tracing support: disabled
|
48
|
Built on: 2018-09-03 09:39:43
|
49
|
Built by: ...@r2c10cn3.leibniz [CMAKE]
|
50
|
Build OS/arch: Linux 3.10.0-693.17.1.el7.x86_64 x86_64
|
51
|
Build CPU vendor: Intel
|
52
|
Build CPU brand: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
|
53
|
Build CPU family: 6 Model: 79 Stepping: 1
|
54
|
Build CPU features: aes apic avx avx2 clfsh cmov cx8 cx16 f16c fma hle htt intel lahf mmx msr nonstop_tsc pcid pclmuldq pdcm pdpe1gb popcnt pse rdrnd rdtscp rtm sse2 sse3 sse4.1 sse4.2 ssse3 tdt x2apic
|
55
|
C compiler: /apps/noarch/intel-psxe/2018_update3/compilers_and_libraries_2018.3.222/linux/mpi/intel64/bin/mpiicc Intel 18.0.3.20180410
|
56
|
C compiler flags: -march=core-avx2 -mkl=sequential -std=gnu99 -O3 -DNDEBUG -ip -funroll-all-loops -alias-const -ansi-alias -no-prec-div -fimf-domain-exclusion=14 -qoverride-limits
|
57
|
C++ compiler: /apps/noarch/intel-psxe/2018_update3/compilers_and_libraries_2018.3.222/linux/mpi/intel64/bin/mpiicpc Intel 18.0.3.20180410
|
58
|
C++ compiler flags: -march=core-avx2 -mkl=sequential -std=c++11 -O3 -DNDEBUG -ip -funroll-all-loops -alias-const -ansi-alias -no-prec-div -fimf-domain-exclusion=14 -qoverride-limits
|
59
|
|
60
|
|
61
|
Running on 4 nodes with total 112 cores, 112 logical cores
|
62
|
Cores per node: 28
|
63
|
Logical cores per node: 28
|
64
|
Hardware detected on host r2c01cn3.leibniz (the node of MPI rank 0):
|
65
|
CPU info:
|
66
|
Vendor: Intel
|
67
|
Brand: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
|
68
|
Family: 6 Model: 79 Stepping: 1
|
69
|
Features: aes apic avx avx2 clfsh cmov cx8 cx16 f16c fma hle htt intel lahf mmx msr nonstop_tsc pcid pclmuldq pdcm pdpe1gb popcnt pse rdrnd rdtscp rtm sse2 sse3 sse4.1 sse4.2 ssse3 tdt x2apic
|
70
|
Hardware topology: Full, with devices
|
71
|
Sockets, cores, and logical processors:
|
72
|
Socket 0: [ 0] [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [ 10] [ 11] [ 12] [ 13]
|
73
|
Socket 1: [ 14] [ 15] [ 16] [ 17] [ 18] [ 19] [ 20] [ 21] [ 22] [ 23] [ 24] [ 25] [ 26] [ 27]
|
74
|
Numa nodes:
|
75
|
Node 0 (68600541184 bytes mem): 0 1 2 3 4 5 6 7 8 9 10 11 12 13
|
76
|
Node 1 (68719476736 bytes mem): 14 15 16 17 18 19 20 21 22 23 24 25 26 27
|
77
|
Latency:
|
78
|
0 1
|
79
|
0 1.00 2.10
|
80
|
1 2.10 1.00
|
81
|
Caches:
|
82
|
L1: 32768 bytes, linesize 64 bytes, assoc. 8, shared 1 ways
|
83
|
L2: 262144 bytes, linesize 64 bytes, assoc. 8, shared 1 ways
|
84
|
L3: 36700160 bytes, linesize 64 bytes, assoc. 20, shared 14 ways
|
85
|
PCI devices:
|
86
|
0000:01:00.0 Id: 8086:1521 Class: 0x0200 Numa: 0
|
87
|
0000:01:00.1 Id: 8086:1521 Class: 0x0200 Numa: 0
|
88
|
0000:02:00.0 Id: 15b3:1013 Class: 0x0207 Numa: 0
|
89
|
0000:00:11.4 Id: 8086:8d62 Class: 0x0106 Numa: 0
|
90
|
0000:07:00.0 Id: 1a03:2000 Class: 0x0300 Numa: 0
|
91
|
0000:00:1f.2 Id: 8086:8d02 Class: 0x0106 Numa: 0
|
92
|
|
93
|
|
94
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
95
|
M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E.
|
96
|
Lindahl
|
97
|
GROMACS: High performance molecular simulations through multi-level
|
98
|
parallelism from laptops to supercomputers
|
99
|
SoftwareX 1 (2015) pp. 19-25
|
100
|
-------- -------- --- Thank You --- -------- --------
|
101
|
|
102
|
|
103
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
104
|
S. Páll, M. J. Abraham, C. Kutzner, B. Hess, E. Lindahl
|
105
|
Tackling Exascale Software Challenges in Molecular Dynamics Simulations with
|
106
|
GROMACS
|
107
|
In S. Markidis & E. Laure (Eds.), Solving Software Challenges for Exascale 8759 (2015) pp. 3-27
|
108
|
-------- -------- --- Thank You --- -------- --------
|
109
|
|
110
|
|
111
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
112
|
S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R.
|
113
|
Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl
|
114
|
GROMACS 4.5: a high-throughput and highly parallel open source molecular
|
115
|
simulation toolkit
|
116
|
Bioinformatics 29 (2013) pp. 845-54
|
117
|
-------- -------- --- Thank You --- -------- --------
|
118
|
|
119
|
|
120
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
121
|
B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
|
122
|
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
|
123
|
molecular simulation
|
124
|
J. Chem. Theory Comput. 4 (2008) pp. 435-447
|
125
|
-------- -------- --- Thank You --- -------- --------
|
126
|
|
127
|
|
128
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
129
|
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
|
130
|
Berendsen
|
131
|
GROMACS: Fast, Flexible and Free
|
132
|
J. Comp. Chem. 26 (2005) pp. 1701-1719
|
133
|
-------- -------- --- Thank You --- -------- --------
|
134
|
|
135
|
|
136
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
137
|
E. Lindahl and B. Hess and D. van der Spoel
|
138
|
GROMACS 3.0: A package for molecular simulation and trajectory analysis
|
139
|
J. Mol. Mod. 7 (2001) pp. 306-317
|
140
|
-------- -------- --- Thank You --- -------- --------
|
141
|
|
142
|
|
143
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
144
|
H. J. C. Berendsen, D. van der Spoel and R. van Drunen
|
145
|
GROMACS: A message-passing parallel molecular dynamics implementation
|
146
|
Comp. Phys. Comm. 91 (1995) pp. 43-56
|
147
|
-------- -------- --- Thank You --- -------- --------
|
148
|
|
149
|
Input Parameters:
|
150
|
integrator = md
|
151
|
tinit = 0
|
152
|
dt = 0.002
|
153
|
nsteps = 500000
|
154
|
init-step = 0
|
155
|
simulation-part = 1
|
156
|
comm-mode = Linear
|
157
|
nstcomm = 100
|
158
|
bd-fric = 0
|
159
|
ld-seed = -350048814
|
160
|
emtol = 10
|
161
|
emstep = 0.01
|
162
|
niter = 20
|
163
|
fcstep = 0
|
164
|
nstcgsteep = 1000
|
165
|
nbfgscorr = 10
|
166
|
rtpi = 0.05
|
167
|
nstxout = 0
|
168
|
nstvout = 0
|
169
|
nstfout = 0
|
170
|
nstlog = 50000
|
171
|
nstcalcenergy = 100
|
172
|
nstenergy = 50000
|
173
|
nstxout-compressed = 50000
|
174
|
compressed-x-precision = 1000
|
175
|
cutoff-scheme = Verlet
|
176
|
nstlist = 20
|
177
|
ns-type = Grid
|
178
|
pbc = xyz
|
179
|
periodic-molecules = false
|
180
|
verlet-buffer-tolerance = 0.005
|
181
|
rlist = 1.223
|
182
|
coulombtype = PME
|
183
|
coulomb-modifier = Potential-shift
|
184
|
rcoulomb-switch = 0
|
185
|
rcoulomb = 1.2
|
186
|
epsilon-r = 1
|
187
|
epsilon-rf = inf
|
188
|
vdw-type = Cut-off
|
189
|
vdw-modifier = Potential-shift
|
190
|
rvdw-switch = 1
|
191
|
rvdw = 1.2
|
192
|
DispCorr = EnerPres
|
193
|
table-extension = 1
|
194
|
fourierspacing = 0.16
|
195
|
fourier-nx = 96
|
196
|
fourier-ny = 84
|
197
|
fourier-nz = 80
|
198
|
pme-order = 4
|
199
|
ewald-rtol = 1e-05
|
200
|
ewald-rtol-lj = 0.001
|
201
|
lj-pme-comb-rule = Geometric
|
202
|
ewald-geometry = 0
|
203
|
epsilon-surface = 0
|
204
|
implicit-solvent = No
|
205
|
gb-algorithm = Still
|
206
|
nstgbradii = 1
|
207
|
rgbradii = 1
|
208
|
gb-epsilon-solvent = 80
|
209
|
gb-saltconc = 0
|
210
|
gb-obc-alpha = 1
|
211
|
gb-obc-beta = 0.8
|
212
|
gb-obc-gamma = 4.85
|
213
|
gb-dielectric-offset = 0.009
|
214
|
sa-algorithm = Ace-approximation
|
215
|
sa-surface-tension = 2.05016
|
216
|
tcoupl = V-rescale
|
217
|
nsttcouple = 20
|
218
|
nh-chain-length = 0
|
219
|
print-nose-hoover-chain-variables = false
|
220
|
pcoupl = Berendsen
|
221
|
pcoupltype = Isotropic
|
222
|
nstpcouple = 20
|
223
|
tau-p = 2
|
224
|
compressibility (3x3):
|
225
|
compressibility[ 0]={ 4.50000e-05, 0.00000e+00, 0.00000e+00}
|
226
|
compressibility[ 1]={ 0.00000e+00, 4.50000e-05, 0.00000e+00}
|
227
|
compressibility[ 2]={ 0.00000e+00, 0.00000e+00, 4.50000e-05}
|
228
|
ref-p (3x3):
|
229
|
ref-p[ 0]={ 1.00000e+00, 0.00000e+00, 0.00000e+00}
|
230
|
ref-p[ 1]={ 0.00000e+00, 1.00000e+00, 0.00000e+00}
|
231
|
ref-p[ 2]={ 0.00000e+00, 0.00000e+00, 1.00000e+00}
|
232
|
refcoord-scaling = COM
|
233
|
posres-com (3):
|
234
|
posres-com[0]= 0.00000e+00
|
235
|
posres-com[1]= 0.00000e+00
|
236
|
posres-com[2]= 0.00000e+00
|
237
|
posres-comB (3):
|
238
|
posres-comB[0]= 0.00000e+00
|
239
|
posres-comB[1]= 0.00000e+00
|
240
|
posres-comB[2]= 0.00000e+00
|
241
|
QMMM = false
|
242
|
QMconstraints = 0
|
243
|
QMMMscheme = 0
|
244
|
MMChargeScaleFactor = 1
|
245
|
qm-opts:
|
246
|
ngQM = 0
|
247
|
constraint-algorithm = Lincs
|
248
|
continuation = true
|
249
|
Shake-SOR = false
|
250
|
shake-tol = 0.0001
|
251
|
lincs-order = 4
|
252
|
lincs-iter = 1
|
253
|
lincs-warnangle = 30
|
254
|
nwall = 0
|
255
|
wall-type = 9-3
|
256
|
wall-r-linpot = -1
|
257
|
wall-atomtype[0] = -1
|
258
|
wall-atomtype[1] = -1
|
259
|
wall-density[0] = 0
|
260
|
wall-density[1] = 0
|
261
|
wall-ewald-zfac = 3
|
262
|
pull = true
|
263
|
pull-cylinder-r = 1.5
|
264
|
pull-constr-tol = 1e-06
|
265
|
pull-print-COM = true
|
266
|
pull-print-ref-value = true
|
267
|
pull-print-components = true
|
268
|
pull-nstxout = 50000
|
269
|
pull-nstfout = 50000
|
270
|
pull-ngroups = 3
|
271
|
pull-group 0:
|
272
|
atom: not available
|
273
|
weight: not available
|
274
|
pbcatom = -1
|
275
|
pull-group 1:
|
276
|
atom (1):
|
277
|
atom[0]=1442
|
278
|
weight: not available
|
279
|
pbcatom = -1
|
280
|
pull-group 2:
|
281
|
atom (2):
|
282
|
atom[0]=4641
|
283
|
atom[1]=4643
|
284
|
weight: not available
|
285
|
pbcatom = 4641
|
286
|
pull-ncoords = 1
|
287
|
pull-coord 0:
|
288
|
type = umbrella
|
289
|
geometry = distance
|
290
|
group[0] = 1
|
291
|
group[1] = 2
|
292
|
dim (3):
|
293
|
dim[0]=1
|
294
|
dim[1]=1
|
295
|
dim[2]=1
|
296
|
origin (3):
|
297
|
origin[0]= 0.00000e+00
|
298
|
origin[1]= 0.00000e+00
|
299
|
origin[2]= 0.00000e+00
|
300
|
vec (3):
|
301
|
vec[0]= 0.00000e+00
|
302
|
vec[1]= 0.00000e+00
|
303
|
vec[2]= 0.00000e+00
|
304
|
start = true
|
305
|
init = 0.518654
|
306
|
rate = 0
|
307
|
k = 1000
|
308
|
kB = 1000
|
309
|
awh = false
|
310
|
rotation = false
|
311
|
interactiveMD = false
|
312
|
disre = No
|
313
|
disre-weighting = Conservative
|
314
|
disre-mixed = false
|
315
|
dr-fc = 1000
|
316
|
dr-tau = 0
|
317
|
nstdisreout = 100
|
318
|
orire-fc = 0
|
319
|
orire-tau = 0
|
320
|
nstorireout = 100
|
321
|
free-energy = no
|
322
|
cos-acceleration = 0
|
323
|
deform (3x3):
|
324
|
deform[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
|
325
|
deform[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
|
326
|
deform[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
|
327
|
simulated-tempering = false
|
328
|
swapcoords = no
|
329
|
userint1 = 0
|
330
|
userint2 = 0
|
331
|
userint3 = 0
|
332
|
userint4 = 0
|
333
|
userreal1 = 0
|
334
|
userreal2 = 0
|
335
|
userreal3 = 0
|
336
|
userreal4 = 0
|
337
|
applied-forces:
|
338
|
electric-field:
|
339
|
x:
|
340
|
E0 = 0
|
341
|
omega = 0
|
342
|
t0 = 0
|
343
|
sigma = 0
|
344
|
y:
|
345
|
E0 = 0
|
346
|
omega = 0
|
347
|
t0 = 0
|
348
|
sigma = 0
|
349
|
z:
|
350
|
E0 = 0
|
351
|
omega = 0
|
352
|
t0 = 0
|
353
|
sigma = 0
|
354
|
grpopts:
|
355
|
nrdf: 12909.9 439152
|
356
|
ref-t: 300 300
|
357
|
tau-t: 0.1 0.1
|
358
|
annealing: No No
|
359
|
annealing-npoints: 0 0
|
360
|
acc: 0 0 0
|
361
|
nfreeze: N N N
|
362
|
energygrp-flags[ 0]: 0
|
363
|
|
364
|
Changing nstlist from 20 to 80, rlist from 1.223 to 1.326
|
365
|
|
366
|
|
367
|
Initializing Domain Decomposition on 112 ranks
|
368
|
Dynamic load balancing: locked
|
369
|
Minimum cell size due to atom displacement: 0.625 nm
|
370
|
Initial maximum inter charge-group distances:
|
371
|
two-body bonded interactions: 0.443 nm, LJ-14, atoms 1990 2780
|
372
|
multi-body bonded interactions: 0.443 nm, Proper Dih., atoms 1990 2780
|
373
|
Minimum cell size due to bonded interactions: 0.487 nm
|
374
|
User supplied maximum distance required for P-LINCS: 0.700 nm
|
375
|
Guess for relative PME load: 0.13
|
376
|
Will use 96 particle-particle and 16 PME only ranks
|
377
|
This is a guess, check the performance at the end of the log file
|
378
|
Using 16 separate PME ranks, as guessed by mdrun
|
379
|
Scaling the initial minimum size with 1/0.9 (option -dds) = 1.11111
|
380
|
Optimizing the DD grid for 96 cells with a minimum initial size of 0.778 nm
|
381
|
The maximum allowed number of cells is: X 18 Y 17 Z 15
|
382
|
Domain decomposition grid 4 x 4 x 6, separate PME ranks 16
|
383
|
PME domain decomposition: 4 x 4 x 1
|
384
|
Interleaving PP and PME ranks
|
385
|
This rank does only particle-particle work.
|
386
|
|
387
|
Domain decomposition rank 0, coordinates 0 0 0
|
388
|
|
389
|
The initial number of communication pulses is: X 1 Y 1 Z 1
|
390
|
The initial domain decomposition cell size is: X 3.63 nm Y 3.31 nm Z 2.00 nm
|
391
|
|
392
|
The maximum allowed distance for charge groups involved in interactions is:
|
393
|
non-bonded interactions 1.326 nm
|
394
|
(the following are initial values, they could change due to box deformation)
|
395
|
two-body bonded interactions (-rdd) 1.326 nm
|
396
|
multi-body bonded interactions (-rdd) 1.326 nm
|
397
|
atoms separated by up to 5 constraints (-rcon) 2.003 nm
|
398
|
|
399
|
When dynamic load balancing gets turned on, these settings will change to:
|
400
|
The maximum number of communication pulses is: X 1 Y 1 Z 1
|
401
|
The minimum size for domain decomposition cells is 1.326 nm
|
402
|
The requested allowed shrink of DD cells (option -dds) is: 0.90
|
403
|
The allowed shrink of domain decomposition cells is: X 0.37 Y 0.40 Z 0.66
|
404
|
The maximum allowed distance for charge groups involved in interactions is:
|
405
|
non-bonded interactions 1.326 nm
|
406
|
two-body bonded interactions (-rdd) 1.326 nm
|
407
|
multi-body bonded interactions (-rdd) 1.326 nm
|
408
|
atoms separated by up to 5 constraints (-rcon) 1.326 nm
|
409
|
|
410
|
Using two step summing over 4 groups of on average 24.0 ranks
|
411
|
|
412
|
Using 112 MPI processes
|
413
|
Using 1 OpenMP thread per MPI process
|
414
|
|
415
|
|
416
|
Overriding thread affinity set outside gmx mdrun
|
417
|
|
418
|
Pinning threads with an auto-selected logical core stride of 1
|
419
|
System total charge: -0.000
|
420
|
Will do PME sum in reciprocal space for electrostatic interactions.
|
421
|
|
422
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
423
|
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen
|
424
|
A smooth particle mesh Ewald method
|
425
|
J. Chem. Phys. 103 (1995) pp. 8577-8592
|
426
|
-------- -------- --- Thank You --- -------- --------
|
427
|
|
428
|
Using a Gaussian width (1/beta) of 0.384195 nm for Ewald
|
429
|
Potential shift: LJ r^-12: -1.122e-01 r^-6: -3.349e-01, Ewald -8.333e-06
|
430
|
Initialized non-bonded Ewald correction tables, spacing: 1.02e-03 size: 1176
|
431
|
|
432
|
Long Range LJ corr.: <C6> 3.1361e-04
|
433
|
Generated table with 1163 data points for Ewald.
|
434
|
Tabscale = 500 points/nm
|
435
|
Generated table with 1163 data points for LJ6.
|
436
|
Tabscale = 500 points/nm
|
437
|
Generated table with 1163 data points for LJ12.
|
438
|
Tabscale = 500 points/nm
|
439
|
Generated table with 1163 data points for 1-4 COUL.
|
440
|
Tabscale = 500 points/nm
|
441
|
Generated table with 1163 data points for 1-4 LJ6.
|
442
|
Tabscale = 500 points/nm
|
443
|
Generated table with 1163 data points for 1-4 LJ12.
|
444
|
Tabscale = 500 points/nm
|
445
|
|
446
|
Using SIMD 4x8 nonbonded short-range kernels
|
447
|
|
448
|
Using a dual 4x8 pair-list setup updated with dynamic pruning:
|
449
|
outer list: updated every 80 steps, buffer 0.126 nm, rlist 1.326 nm
|
450
|
inner list: updated every 13 steps, buffer 0.002 nm, rlist 1.202 nm
|
451
|
At tolerance 0.005 kJ/mol/ps per atom, equivalent classical 1x1 list would be:
|
452
|
outer list: updated every 80 steps, buffer 0.275 nm, rlist 1.475 nm
|
453
|
inner list: updated every 13 steps, buffer 0.052 nm, rlist 1.252 nm
|
454
|
|
455
|
Using full Lennard-Jones parameter combination matrix
|
456
|
|
457
|
|
458
|
Will apply potential COM pulling
|
459
|
with 1 pull coordinate and 2 groups
|
460
|
Pull group 1: 1 atoms, mass 13.019
|
461
|
Pull group 2: 2 atoms, mass 26.018
|
462
|
Will use a sub-communicator for pull communication
|
463
|
|
464
|
Initializing Parallel LINear Constraint Solver
|
465
|
|
466
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
467
|
B. Hess
|
468
|
P-LINCS: A Parallel Linear Constraint Solver for molecular simulation
|
469
|
J. Chem. Theory Comput. 4 (2008) pp. 116-122
|
470
|
-------- -------- --- Thank You --- -------- --------
|
471
|
|
472
|
The number of constraints is 1073
|
473
|
There are inter charge-group constraints,
|
474
|
will communicate selected coordinates each lincs iteration
|
475
|
|
476
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
477
|
S. Miyamoto and P. A. Kollman
|
478
|
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
|
479
|
Water Models
|
480
|
J. Comp. Chem. 13 (1992) pp. 952-962
|
481
|
-------- -------- --- Thank You --- -------- --------
|
482
|
|
483
|
|
484
|
Linking all bonded interactions to atoms
|
485
|
|
486
|
|
487
|
The -noconfout functionality is deprecated, and may be removed in a future version.
|
488
|
|
489
|
Intra-simulation communication will occur every 20 steps.
|
490
|
Center of mass motion removal mode is Linear
|
491
|
We have the following groups for center of mass motion removal:
|
492
|
0: rest
|
493
|
|
494
|
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
|
495
|
G. Bussi, D. Donadio and M. Parrinello
|
496
|
Canonical sampling through velocity rescaling
|
497
|
J. Chem. Phys. 126 (2007) pp. 014101
|
498
|
-------- -------- --- Thank You --- -------- --------
|
499
|
|
500
|
There are: 224238 Atoms
|
501
|
Atom distribution over 96 domains: av 2335 stddev 86 min 2090 max 2430
|
502
|
|
503
|
Started mdrun on rank 0 Fri Mar 22 09:18:14 2019
|
504
|
Step Time
|
505
|
0 0.00000
|
506
|
|
507
|
Energies (kJ/mol)
|
508
|
G96Bond G96Angle Proper Dih. Improper Dih. LJ-14
|
509
|
5.09960e+03 7.77425e+03 4.85656e+03 2.47900e+03 -1.61705e+02
|
510
|
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
|
511
|
6.64263e+04 5.11422e+05 -1.65591e+04 -3.68724e+06 1.05264e+04
|
512
|
COM Pull En. Potential Kinetic En. Total Energy Conserved En.
|
513
|
6.82855e-14 -3.09538e+06 9.65238e+03 -3.08573e+06 -3.08550e+06
|
514
|
Temperature Pres. DC (bar) Pressure (bar) Constr. rmsd
|
515
|
5.13609e+00 -1.19286e+02 -1.38954e+03 2.44671e-06
|
516
|
|
517
|
DD step 79 load imb.: force 4.9% pme mesh/force 0.852
|
518
|
|
519
|
|
520
|
step 240 Turning on dynamic load balancing, because the performance loss due to load imbalance is 3.8 %.
|
521
|
|
522
|
|
523
|
step 8000 Turning off dynamic load balancing, because it is degrading performance.
|
524
|
|
525
|
Atom distribution over 96 domains: av 2335 stddev 86 min 2110 max 2401
|
526
|
|
527
|
step 24000 Turning on dynamic load balancing, because the performance loss due to load imbalance is 6.7 %.
|
528
|
|
529
|
|
530
|
step 25600 Turning off dynamic load balancing, because it is degrading performance.
|
531
|
|
532
|
Atom distribution over 96 domains: av 2335 stddev 89 min 2078 max 2408
|
533
|
|
534
|
step 32000 Turning on dynamic load balancing, because the performance loss due to load imbalance is 6.0 %.
|
535
|
|
536
|
|
537
|
step 35200 Turning off dynamic load balancing, because it is degrading performance.
|
538
|
|
539
|
Atom distribution over 96 domains: av 2335 stddev 87 min 2092 max 2408
|
540
|
|
541
|
step 40000 Will no longer try dynamic load balancing, as it degraded performance.
|
542
|
|
543
|
DD step 49999 load imb.: force 5.3% pme mesh/force 0.644
|
544
|
|
545
|
Step Time
|
546
|
50000 100.00000
|
547
|
|
548
|
Energies (kJ/mol)
|
549
|
G96Bond G96Angle Proper Dih. Improper Dih. LJ-14
|
550
|
4.83032e+03 7.91144e+03 4.75862e+03 2.58501e+03 -1.28384e+02
|
551
|
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
|
552
|
6.65623e+04 5.12972e+05 -1.65428e+04 -3.69199e+06 1.06877e+04
|
553
|
COM Pull En. Potential Kinetic En. Total Energy Conserved En.
|
554
|
3.75102e+00 -3.09835e+06 5.63326e+05 -2.53502e+06 -3.10342e+06
|
555
|
Temperature Pres. DC (bar) Pressure (bar) Constr. rmsd
|
556
|
2.99749e+02 -1.19052e+02 -1.98544e+00 2.95643e-06
|
557
|
|
558
|
DD step 99999 load imb.: force 5.7% pme mesh/force 0.647
|
559
|
|
560
|
Step Time
|
561
|
100000 200.00000
|
562
|
|
563
|
Energies (kJ/mol)
|
564
|
G96Bond G96Angle Proper Dih. Improper Dih. LJ-14
|
565
|
4.75345e+03 7.58282e+03 4.85553e+03 2.57402e+03 -1.79248e+02
|
566
|
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
|
567
|
6.64540e+04 5.11097e+05 -1.65655e+04 -3.68951e+06 1.06834e+04
|
568
|
COM Pull En. Potential Kinetic En. Total Energy Conserved En.
|
569
|
3.31456e+00 -3.09825e+06 5.64329e+05 -2.53392e+06 -3.10198e+06
|
570
|
Temperature Pres. DC (bar) Pressure (bar) Constr. rmsd
|
571
|
3.00283e+02 -1.19378e+02 -2.32919e+01 2.76256e-06
|
572
|
|
573
|
DD step 149999 load imb.: force 5.5% pme mesh/force 0.641
|
574
|
|
575
|
Step Time
|
576
|
150000 300.00000
|
577
|
|
578
|
Energies (kJ/mol)
|
579
|
G96Bond G96Angle Proper Dih. Improper Dih. LJ-14
|
580
|
5.04330e+03 7.84732e+03 4.76267e+03 2.59187e+03 -1.62709e+02
|
581
|
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
|
582
|
6.63614e+04 5.11111e+05 -1.65646e+04 -3.68670e+06 1.05392e+04
|
583
|
COM Pull En. Potential Kinetic En. Total Energy Conserved En.
|
584
|
6.31904e+00 -3.09516e+06 5.63786e+05 -2.53138e+06 -3.10055e+06
|
585
|
Temperature Pres. DC (bar) Pressure (bar) Constr. rmsd
|
586
|
2.99994e+02 -1.19365e+02 1.36845e+01 2.96967e-06
|
587
|
|
588
|
Writing checkpoint, step 188880 at Fri Mar 22 09:33:14 2019
|
589
|
|
590
|
|
591
|
DD step 199999 load imb.: force 3.8% pme mesh/force 0.657
|
592
|
|
593
|
Step Time
|
594
|
200000 400.00000
|
595
|
|
596
|
Energies (kJ/mol)
|
597
|
G96Bond G96Angle Proper Dih. Improper Dih. LJ-14
|
598
|
4.94785e+03 7.55779e+03 4.90840e+03 2.40698e+03 -7.60589e+01
|
599
|
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
|
600
|
6.66943e+04 5.10013e+05 -1.65563e+04 -3.68945e+06 1.06891e+04
|
601
|
COM Pull En. Potential Kinetic En. Total Energy Conserved En.
|
602
|
1.73298e+01 -3.09885e+06 5.65413e+05 -2.53344e+06 -3.09905e+06
|
603
|
Temperature Pres. DC (bar) Pressure (bar) Constr. rmsd
|
604
|
3.00859e+02 -1.19246e+02 -6.90249e+01 2.82245e-06
|
605
|
|
606
|
DD step 249999 load imb.: force 5.9% pme mesh/force 0.640
|
607
|
|
608
|
Step Time
|
609
|
250000 500.00000
|
610
|
|
611
|
Energies (kJ/mol)
|
612
|
G96Bond G96Angle Proper Dih. Improper Dih. LJ-14
|
613
|
5.04615e+03 7.56546e+03 4.92053e+03 2.49466e+03 -1.13046e+02
|
614
|
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
|
615
|
6.66422e+04 5.12506e+05 -1.65587e+04 -3.69014e+06 1.06123e+04
|
616
|
COM Pull En. Potential Kinetic En. Total Energy Conserved En.
|
617
|
1.24707e+01 -3.09701e+06 5.64644e+05 -2.53237e+06 -3.09746e+06
|
618
|
Temperature Pres. DC (bar) Pressure (bar) Constr. rmsd
|
619
|
3.00450e+02 -1.19281e+02 1.69750e+01 3.14922e-06
|
620
|
|
621
|
DD step 299999 load imb.: force 5.1% pme mesh/force 0.645
|
622
|
|
623
|
Step Time
|
624
|
300000 600.00000
|
625
|
|
626
|
Energies (kJ/mol)
|
627
|
G96Bond G96Angle Proper Dih. Improper Dih. LJ-14
|
628
|
4.87397e+03 7.61933e+03 4.95450e+03 2.49306e+03 -1.36325e+02
|
629
|
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
|
630
|
6.64239e+04 5.13536e+05 -1.65692e+04 -3.69342e+06 1.05761e+04
|
631
|
COM Pull En. Potential Kinetic En. Total Energy Conserved En.
|
632
|
1.48148e+01 -3.09963e+06 5.64550e+05 -2.53508e+06 -3.09601e+06
|
633
|
Temperature Pres. DC (bar) Pressure (bar) Constr. rmsd
|
634
|
3.00400e+02 -1.19431e+02 3.83472e+01 3.14445e-06
|
635
|
|
636
|
DD step 349999 load imb.: force 6.2% pme mesh/force 0.638
|
637
|
|
638
|
Step Time
|
639
|
350000 700.00000
|
640
|
|
641
|
Energies (kJ/mol)
|
642
|
G96Bond G96Angle Proper Dih. Improper Dih. LJ-14
|
643
|
5.08991e+03 7.69764e+03 4.89299e+03 2.53503e+03 -1.66483e+02
|
644
|
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
|
645
|
6.63619e+04 5.11430e+05 -1.65514e+04 -3.68938e+06 1.05755e+04
|
646
|
COM Pull En. Potential Kinetic En. Total Energy Conserved En.
|
647
|
9.36988e+00 -3.09751e+06 5.63559e+05 -2.53395e+06 -3.09443e+06
|
648
|
Temperature Pres. DC (bar) Pressure (bar) Constr. rmsd
|
649
|
2.99873e+02 -1.19176e+02 -4.38299e+01 2.81165e-06
|
650
|
|
651
|
Writing checkpoint, step 377760 at Fri Mar 22 09:48:14 2019
|
652
|
|
653
|
|
654
|
DD step 399999 load imb.: force 5.4% pme mesh/force 0.640
|
655
|
|
656
|
Step Time
|
657
|
400000 800.00000
|
658
|
|
659
|
Energies (kJ/mol)
|
660
|
G96Bond G96Angle Proper Dih. Improper Dih. LJ-14
|
661
|
4.83583e+03 7.86137e+03 4.79819e+03 2.54585e+03 -1.37643e+02
|
662
|
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
|
663
|
6.65807e+04 5.13211e+05 -1.65584e+04 -3.69136e+06 1.06535e+04
|
664
|
COM Pull En. Potential Kinetic En. Total Energy Conserved En.
|
665
|
1.91043e+01 -3.09755e+06 5.63681e+05 -2.53387e+06 -3.09296e+06
|
666
|
Temperature Pres. DC (bar) Pressure (bar) Constr. rmsd
|
667
|
2.99938e+02 -1.19276e+02 7.98090e+00 3.10775e-06
|
668
|
|
669
|
DD step 449999 load imb.: force 3.9% pme mesh/force 0.623
|
670
|
|
671
|
Step Time
|
672
|
450000 900.00000
|
673
|
|
674
|
Energies (kJ/mol)
|
675
|
G96Bond G96Angle Proper Dih. Improper Dih. LJ-14
|
676
|
5.03504e+03 7.58068e+03 4.95366e+03 2.55010e+03 -7.27573e+01
|
677
|
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
|
678
|
6.67311e+04 5.10533e+05 -1.65552e+04 -3.68593e+06 1.06144e+04
|
679
|
COM Pull En. Potential Kinetic En. Total Energy Conserved En.
|
680
|
9.14612e+00 -3.09455e+06 5.63459e+05 -2.53109e+06 -3.09145e+06
|
681
|
Temperature Pres. DC (bar) Pressure (bar) Constr. rmsd
|
682
|
2.99820e+02 -1.19230e+02 2.88342e+00 2.83940e-06
|
683
|
|
684
|
DD step 499999 load imb.: force 5.3% pme mesh/force 0.629
|
685
|
|
686
|
Step Time
|
687
|
500000 1000.00000
|
688
|
|
689
|
Energies (kJ/mol)
|
690
|
G96Bond G96Angle Proper Dih. Improper Dih. LJ-14
|
691
|
4.86851e+03 7.78448e+03 5.02171e+03 2.57295e+03 -1.99886e+02
|
692
|
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
|
693
|
6.65664e+04 5.11263e+05 -1.65511e+04 -3.69094e+06 1.05802e+04
|
694
|
COM Pull En. Potential Kinetic En. Total Energy Conserved En.
|
695
|
5.72201e+00 -3.09903e+06 5.61760e+05 -2.53727e+06 -3.08991e+06
|
696
|
Temperature Pres. DC (bar) Pressure (bar) Constr. rmsd
|
697
|
2.98916e+02 -1.19172e+02 -8.74913e+01 2.84239e-06
|
698
|
|
699
|
<====== ############### ==>
|
700
|
<==== A V E R A G E S ====>
|
701
|
<== ############### ======>
|
702
|
|
703
|
Statistics over 500001 steps using 5001 frames
|
704
|
|
705
|
Energies (kJ/mol)
|
706
|
G96Bond G96Angle Proper Dih. Improper Dih. LJ-14
|
707
|
4.91060e+03 7.67629e+03 4.91081e+03 2.55615e+03 -1.84510e+02
|
708
|
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
|
709
|
6.65040e+04 5.12981e+05 -1.65579e+04 -3.69164e+06 1.05927e+04
|
710
|
COM Pull En. Potential Kinetic En. Total Energy Conserved En.
|
711
|
8.79495e+00 -3.09824e+06 5.63645e+05 -2.53459e+06 -3.09749e+06
|
712
|
Temperature Pres. DC (bar) Pressure (bar) Constr. rmsd
|
713
|
2.99919e+02 -1.19269e+02 1.04596e+00 0.00000e+00
|
714
|
|
715
|
Box-X Box-Y Box-Z
|
716
|
1.45132e+01 1.32261e+01 1.20182e+01
|
717
|
|
718
|
Total Virial (kJ/mol)
|
719
|
1.87733e+05 1.80507e+01 -5.28405e+01
|
720
|
1.99566e+01 1.87843e+05 1.49384e+01
|
721
|
-5.10672e+01 1.46297e+01 1.87851e+05
|
722
|
|
723
|
Pressure (bar)
|
724
|
2.00325e+00 -4.36769e-01 8.11049e-01
|
725
|
-4.64232e-01 5.17693e-01 -1.78615e-01
|
726
|
7.85505e-01 -1.74166e-01 6.16928e-01
|
727
|
|
728
|
T-protein_and_gpfT-water_and_ions
|
729
|
2.99993e+02 2.99916e+02
|
730
|
|
731
|
|
732
|
M E G A - F L O P S A C C O U N T I N G
|
733
|
|
734
|
NB=Group-cutoff nonbonded kernels NxN=N-by-N cluster Verlet kernels
|
735
|
RF=Reaction-Field VdW=Van der Waals QSTab=quadratic-spline table
|
736
|
W3=SPC/TIP3p W4=TIP4p (single or pairs)
|
737
|
V&F=Potential and force V=Potential only F=Force only
|
738
|
|
739
|
Computing: M-Number M-Flops % Flops
|
740
|
-----------------------------------------------------------------------------
|
741
|
Pair Search distance check 845339.861640 7608058.755 0.1
|
742
|
NxN Ewald Elec. + LJ [F] 53531920.679536 3533106764.849 51.0
|
743
|
NxN Ewald Elec. + LJ [V&F] 540836.388816 57869493.603 0.8
|
744
|
NxN LJ [F] 77728.720608 2565047.780 0.0
|
745
|
NxN LJ [V&F] 785.026592 33756.143 0.0
|
746
|
NxN Ewald Elec. [F] 50759238.604624 3096313554.882 44.7
|
747
|
NxN Ewald Elec. [V&F] 512821.787472 43077030.148 0.6
|
748
|
1,4 nonbonded interactions 3669.507339 330255.661 0.0
|
749
|
Calc Weights 336357.672714 12108876.218 0.2
|
750
|
Spread Q Bspline 7175630.351232 14351260.702 0.2
|
751
|
Gather F Bspline 7175630.351232 43053782.107 0.6
|
752
|
3D-FFT 12450329.900610 99602639.205 1.4
|
753
|
Solve PME 16128.032256 1032194.064 0.0
|
754
|
Reset In Box 1400.814786 4202.444 0.0
|
755
|
CG-CoM 1401.711738 4205.135 0.0
|
756
|
Bonds 1849.003698 109091.218 0.0
|
757
|
Angles 3514.507029 590437.181 0.0
|
758
|
Propers 1640.503281 375675.251 0.0
|
759
|
Impropers 1287.002574 267696.535 0.0
|
760
|
Virial 5714.178558 102855.214 0.0
|
761
|
Stop-CM 1121.414238 11214.142 0.0
|
762
|
P-Coupling 5606.174238 33637.045 0.0
|
763
|
Calc-Ekin 11212.348476 302733.409 0.0
|
764
|
Lincs 566.014829 33960.890 0.0
|
765
|
Lincs-Mat 954.342888 3817.372 0.0
|
766
|
Constraint-V 121602.252436 972818.019 0.0
|
767
|
Constraint-Vir 6052.042015 145249.008 0.0
|
768
|
Settle 40156.740926 12970627.319 0.2
|
769
|
-----------------------------------------------------------------------------
|
770
|
Total 6926980934.302 100.0
|
771
|
-----------------------------------------------------------------------------
|
772
|
|
773
|
|
774
|
D O M A I N D E C O M P O S I T I O N S T A T I S T I C S
|
775
|
|
776
|
av. #atoms communicated per step for force: 2 x 447044.7
|
777
|
av. #atoms communicated per step for LINCS: 2 x 21812.1
|
778
|
|
779
|
|
780
|
Dynamic load balancing report:
|
781
|
DLB got disabled because it was unsuitable to use.
|
782
|
Average load imbalance: 7.8%.
|
783
|
The balanceable part of the MD step is 87%, load imbalance is computed from this.
|
784
|
Part of the total run time spent waiting due to load imbalance: 6.7%.
|
785
|
Average PME mesh/force load: 0.628
|
786
|
Part of the total run time spent waiting due to PP/PME imbalance: 5.0 %
|
787
|
|
788
|
NOTE: 6.7 % of the available CPU time was lost due to load imbalance
|
789
|
in the domain decomposition.
|
790
|
You might want to use dynamic load balancing (option -dlb.)
|
791
|
|
792
|
|
793
|
R E A L C Y C L E A N D T I M E A C C O U N T I N G
|
794
|
|
795
|
On 96 MPI ranks doing PP, and
|
796
|
on 16 MPI ranks doing PME
|
797
|
|
798
|
Computing: Num Num Call Wall time Giga-Cycles
|
799
|
Ranks Threads Count (s) total sum %
|
800
|
-----------------------------------------------------------------------------
|
801
|
Domain decomp. 96 1 6250 17.190 3960.630 0.6
|
802
|
DD comm. load 96 1 173 0.004 0.867 0.0
|
803
|
DD comm. bounds 96 1 157 0.007 1.726 0.0
|
804
|
Send X to PME 96 1 500001 1.973 454.537 0.1
|
805
|
Neighbor search 96 1 6251 33.463 7709.991 1.2
|
806
|
Comm. coord. 96 1 493750 38.782 8935.419 1.4
|
807
|
Force 96 1 500001 2026.176 466836.010 73.0
|
808
|
Wait + Comm. F 96 1 500001 103.307 23802.143 3.7
|
809
|
PME mesh * 16 1 500001 1402.994 53875.529 8.4
|
810
|
PME wait for PP * 976.796 37509.361 5.9
|
811
|
Wait + Recv. PME F 96 1 500001 5.720 1317.844 0.2
|
812
|
NB X/F buffer ops. 96 1 1487501 21.655 4989.357 0.8
|
813
|
COM pull force 96 1 500001 6.986 1609.659 0.3
|
814
|
Write traj. 96 1 13 0.036 8.262 0.0
|
815
|
Update 96 1 500001 5.806 1337.611 0.2
|
816
|
Constraints 96 1 500001 112.219 25855.418 4.0
|
817
|
Comm. energies 96 1 25001 3.201 737.606 0.1
|
818
|
Rest 3.280 755.727 0.1
|
819
|
-----------------------------------------------------------------------------
|
820
|
Total 2379.805 639698.273 100.0
|
821
|
-----------------------------------------------------------------------------
|
822
|
(*) Note that with separate PME ranks, the walltime column actually sums to
|
823
|
twice the total reported, but the cycle count total and % are correct.
|
824
|
-----------------------------------------------------------------------------
|
825
|
Breakdown of PME mesh computation
|
826
|
-----------------------------------------------------------------------------
|
827
|
PME redist. X/F 16 1 1000002 198.588 7625.860 1.2
|
828
|
PME spread 16 1 500001 460.457 17681.751 2.8
|
829
|
PME gather 16 1 500001 289.656 11122.896 1.7
|
830
|
PME 3D-FFT 16 1 1000002 317.011 12173.346 1.9
|
831
|
PME 3D-FFT Comm. 16 1 2000004 107.426 4125.187 0.6
|
832
|
PME solve Elec 16 1 500001 28.890 1109.375 0.2
|
833
|
-----------------------------------------------------------------------------
|
834
|
|
835
|
Core t (s) Wall t (s) (%)
|
836
|
Time: 266538.111 2379.805 11200.0
|
837
|
39:39
|
838
|
(ns/day) (hour/ns)
|
839
|
Performance: 36.306 0.661
|
840
|
Finished mdrun on rank 0 Fri Mar 22 09:57:54 2019
|