GROMACS - Bug #1297

infinite relative permittivity is incompletely implemented

07/02/2013 10:50 AM - Mark Abraham

<table>
<thead>
<tr>
<th>Status:</th>
<th>Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority:</td>
<td>Normal</td>
</tr>
<tr>
<td>Assignee:</td>
<td>Mark Abraham</td>
</tr>
<tr>
<td>Category:</td>
<td>mdrun</td>
</tr>
<tr>
<td>Target version:</td>
<td></td>
</tr>
<tr>
<td>Affected version:</td>
<td>4.6.2</td>
</tr>
<tr>
<td>Difficulty:</td>
<td>uncategorized</td>
</tr>
</tbody>
</table>

Description

0 ir->epsilon_r[f] is supposed to signal infinite relative permittivity, i.e. fully conducting, so no electrostatic potential.

As partly reported on gmx-developers today by Mark Tianwu Zang:

- ewald_LRcorrection, ewald_charge_correction, do_ewald and calc_verlet_buffer_size use ir->epsilon_r without checking for zero
- solve_pme_yzx does likewise (indirectly)
- generalized Born code does likewise (genborn.c, and all the way into the group kernels)

So various code will divide by zero.

I think the PME, GB and ic data structures should store a multiplicative constant (as fr and ic try to do), that their init routines should all apply the same logic when using inputrec->epsilon_r[f], and that only inputrec should have members epsilon_r[f].

Because this goes everywhere, it's probably easiest to do in master branch with some tests that (0 epsilon_r[f]) => (no crash and no Coulomb) for all coulombtype and GB. I have some as-yet unpublished toys that will support doing that. Then we cherry-pick the result back.

Associated revisions

Revision af3e1a13 - 06/20/2015 08:09 PM - Erik Lindahl

Disallow infinite epsilon with PME or GB.

This leads to divide-by-zero errors, and since it just turns off electrostatics it will be faster to use a plain cutoff, which we now recommend instead.

Fixes #1297.

Change-Id: la5eba7a1d4bd3b387174c9cb4878a2d65ead2c8c

History

#1 - 07/02/2013 01:39 PM - Mark Abraham

Of course, it doesn't make much sense to trigger these code paths with 0 == epsilon_r[f] - all you do is waste time. tpbconv -zeroq supports doing a rerun that happens to have no/few electrostatic interactions, because the searching notices atoms have no charge and the kernels become an empty loop.

We can probably extend coulombtype to include None in 5.0 - a null electrostatics model might be useful for testing code, or with rerun.

The question becomes "why do we support infinite relative permittivity?"

#2 - 07/13/2013 11:11 AM - David van der Spoel

Infinite relative permittivity is the best way of using RF and related methods. Even thought RF is not great we should support it for historical reasons.

#3 - 06/14/2014 10:22 PM - Berk Hess

Infinite epsilon_rf is fully and properly supported.

Infinite epsilon_r simply completely turns off all electrostatic interactions. I don't see any need to support this with PME, GB, etc. grompp should either give a fatal_error and suggest to switch to plain cut-off with epsilon_r=0 for optimal performance.
Gerrit received a related patchset '1' for Issue #1297.
Uploader: Erik Lindahl (erik.lindahl@gmail.com)
Change-IId: Ia5eba7a1d4bd3b387174c9cb4878a2d65ead2c6c
Gerrit URL: https://gerrit.gromacs.org/4747

- Status changed from New to Fix uploaded

- Status changed from Fix uploaded to Closed